Development of Frataxin Gene Expression Measures for the Evaluation of Experimental Treatments in Friedreich’s Ataxia
نویسندگان
چکیده
BACKGROUND Friedreich ataxia is a progressive neurodegenerative disorder caused by GAA triplet repeat expansions or point mutations in the FXN gene and, ultimately, a deficiency in the levels of functional frataxin protein. Heterozygous carriers of the expansion express approximately 50% of normal frataxin levels yet manifest no clinical symptoms, suggesting that therapeutic approaches that increase frataxin may be effective even if frataxin is raised only to carrier levels. Small molecule HDAC inhibitor compounds increase frataxin mRNA and protein levels, and have beneficial effects in animal models of FRDA. METHODOLOGY/PRINCIPAL FINDINGS To gather data supporting the use of frataxin as a therapeutic biomarker of drug response we characterized the intra-individual stability of frataxin over time, determined the contribution of frataxin from different components of blood, compared frataxin measures in different cell compartments, and demonstrated that frataxin increases are achieved in peripheral blood mononuclear cells. Frataxin mRNA and protein levels were stable with repeated sampling over four and 15 weeks. In the 15-week study, the average CV was 15.6% for protein and 18% for mRNA. Highest levels of frataxin in blood were in erythrocytes. As erythrocytes are not useful for frataxin assessment in many clinical trial situations, we confirmed that PBMCs and buccal swabs have frataxin levels equivalent to those of whole blood. In addition, a dose-dependent increase in frataxin was observed when PBMCs isolated from patient blood were treated with HDACi. Finally, higher frataxin levels predicted less severe neurological dysfunction and were associated with slower rates of neurological change. CONCLUSIONS/SIGNIFICANCE Our data support the use of frataxin as a biomarker of drug effect. Frataxin levels are stable over time and as such a 1.5 to 2-fold change would be detectable over normal biological fluctuations. Additionally, our data support buccal cells or PBMCs as sources for measuring frataxin protein in therapeutic trials.
منابع مشابه
Clinical and Genetic Study of Friedreich’s Ataxia and Ataxia with Vitamin E Deficiency in 44 Moroccan Families
Introduction: Friedreich ataxia (FRDA) is a multi-system autosomal-recessive disease, the most common one of the genetically inherited ataxias. FRDA occurs as a consequence of mutations in the frataxin gene, with an expansion of a GAA trinucleotide. Ataxia with vitamin E deficiency (AVED) is characterized clinically by neurological symptoms with often striking resemblance to those of Friedreich...
متن کاملNicotinamide in Friedreich's ataxia: useful or not?
Friedreich’s ataxia is an autosomal recessive neurodegenerative disorder caused by mutations in the frataxin gene (FXN), leading to progressive ataxia, cardiomyopathy, scoliosis, and various other clinical features. Most patients have GAA repeat expansions in intron 1 of FXN, leading to decreased concentrations of frataxin protein and downstream mitochondrial dysfunction. The GAA repeats lead t...
متن کاملClinical data and characterization of the liver conditional mouse model exclude neoplasia as a non-neurological manifestation associated with Friedreich’s ataxia
Friedreich's ataxia (FRDA) is the most common hereditary ataxia in the caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia, hypertrophic cardiomyopathy and increased incidence of diabetes. FRDA is caused by impaired expression of the FXN gene coding for the mitochondrial protein frataxin. During the past ten years, the development of mouse models of FRDA has ...
متن کاملجهش جدید هموپلاسمیک T4216C میتوکندریایی در افراد ایرانی مبتلا به بیماری فردریش اتاکسیا
Introduction: The mitochondrial defects in Friedreich ataxia (FRDA) have been reported in many researches. Friedreich ataxia is an autosomal recessive neurodegenerative disorder caused by decreased expression of the Frataxin protein. Frataxin deficiency leads to excessive free radical production and dysfunction of respiratory chain complexes. Mitochondrial DNA (mtDNA) could be considered as a c...
متن کاملCatalase overexpression rescues Friedreich’s Ataxia mouse models from oxidative stress and mitochondrial iron-loading
Friedreich’s ataxia (FRDA) is an inherited neurodegenerative disorder characterized by gait disturbance and speech problems. Disease pathology is characterized by progressive damage and loss of nerve tissue particular to the peripheral nerve system. FRDA is caused by the relative deficiency of a mitochondrial protein frataxin resulting from an expanded intronic GAA triplet repeat. While the pre...
متن کامل